Name:	

Refraction Phenomena including Total Internal Reflection ${\rm SNC2D}$

Refraction effects produce a number of interes	ting observable phenomena.	by a Glass of Water
E.g. objects in water may appear to be	:	
If we look at an object in a different medium, v	we will see an	
of the object along the	of the rays that are	Figure 2
to us.		
Similarly, an object underwater will appear to	be at a different depth than it	s actual depth:
But more interesting than the refraction of ligh	t rays is the	_ of light rays to refract
Recall that if a ray is travelling from a less den	se material to a more-dense	material, it will bend
the normal and if	normal	normal
travelling from a more-dense material to a	1 81 n2 > n1	n2 < n1 θ ₂
less-dense material it will bend	θ ₂	1 81
<u> </u>	Snell's law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$ or,	equivalently, $\sin \theta_1 l \sin \theta_2 = v_1 l v_2$
So for the case of the ray travelling from the _	dense materia	to thedense
material, there must exist some	incident angle θ_c su	uch that the ray will refract
at from the normal (along the	e boundary).	
Sketch:		

If the light is incident at an a	angle larger than this critica	al angle θ_c ,	
will occur.			
Example: When light is traveritical angle of 42°. Find th			ction will occur at a
Applications:			
	are based entirely or	the principle of TIR. T	hese are flexible strands
of With a	straight or smoothly bendi	ng fibre, the light will h	it the wall at an angle
nigher than the critical angle	e and will all be reflected b	ack into the fibre so that	t no light will be lost.
Air of different	will have d	lifferent <i>n</i> s and light ray	s can reflect within the
nir, resulting in	and		·
Different frequencies () of light actua	lly refract at different _	
Γhis is called	and is especiall	y apparent when white I	light is passed through a
	A	A	A
	e blue	⊕ _{red}	
A B1:	ue light refracts more than red lig	tht due to the difference in wa	velength. This causes
	blue light to deviate from its orig		
Light from sun refraction	Dispersion and		can occur in
interna	1		
reflecti	on .	ich may result in	
refraction			